Network link (branch)
[Transmission flow solver (network)]

The link object implements the general solution elements for branches using the Gauss-Seidel method. More...


Detailed Description

The link object implements the general solution elements for branches using the Gauss-Seidel method.

The following operations are performed on each branch during a bottom-up sync event.

The effective admittance Y is calculated by including half of the line charging capacitance B [Kundur 1993, p. 258]:

\[ \widetilde{Y}_{eff} = \widetilde{Y} + \jmath \frac{B}{2} \]

The admittance coefficient is the inverse of the transformer turns ratio n, if any [Kundur 1993, p. 236]:

\[ c \leftarrow \frac{1}{n} \]

The effective line self-admittance is the product of the admittance coefficient and component admittance

\[ \widetilde{Y}_c = \widetilde{Y}_{eff} c \]

Add the self-admittance and the shunt admittances to the busses [Kundur 1993, p. 259]

\[ \Sigma \widetilde{Y}_{from} \leftarrow \Sigma \widetilde{Y}_{from} + \widetilde{Y}_c + \widetilde{Y}_c (c-1) \]

\[ \Sigma \widetilde{Y}_{to} \leftarrow \Sigma \widetilde{Y}_{to} + \widetilde{Y}_c + \widetilde{Y}_{eff} (1-c) \]

Compute the line current injections on the busses

\[ \widetilde{I}_{from} \leftarrow \widetilde{V}_{to} Y c \]


\[ \widetilde{I}_{to} \leftarrow \widetilde{V}_{from} Y c \]


Add the current injections to the busses

\[ \Sigma \widetilde{YV}_{from} \leftarrow \Sigma \widetilde{YV} - \widetilde{I}_{from} \]


\[ \Sigma \widetilde{YV}_{to} \leftarrow \Sigma \widetilde{YV} - \widetilde{I}_{to} \]

Compute the line current (from -> to)

\[ \widetilde{I} \leftarrow \widetilde{I}_{from} - \widetilde{I}_{to} \]



GridLAB-D™ Version 4.1
An open-source smart grid simulator created by PNNL for the US Department of Energy Office of Electricity